Solved

Find the Rate of Change of the Distance Between the Origin

Question 43

Multiple Choice

Find the rate of change of the distance between the origin and a moving point on the graph of y=x2+7y = x ^ { 2 } + 7 if dxdt=6\frac { d x } { d t } = 6 centimeters per second.


A) dDdt=12x3+90xx4+15x2+49\frac { d D } { d t } = \frac { 12 x ^ { 3 } + 90 x } { \sqrt { x ^ { 4 } + 15 x ^ { 2 } + 49 } }
B) dDdt=6x320xx3+15x2+49\frac { d D } { d t } = \frac { 6 x ^ { 3 } - 20 x } { x ^ { 3 } + 15 x ^ { 2 } + 49 }
C) dDdt=12x390xx3+15x2+49\frac { d D } { d t } = \frac { 12 x ^ { 3 } - 90 x } { \sqrt { x ^ { 3 } + 15 x ^ { 2 } + 49 } }
D) dDdt=6x3+90xx4+14x2+49\frac { d D } { d t } = \frac { 6 x ^ { 3 } + 90 x } { \sqrt { x ^ { 4 } + 14 x ^ { 2 } + 49 } }
E) dDdt=12x3+20xx4+12x2+49\frac { d D } { d t } = \frac { 12 x ^ { 3 } + 20 x } { x ^ { 4 } + 12 x ^ { 2 } + 49 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions