Solved

Determine the Open Intervals on Which the Graph of the Function

Question 69

Multiple Choice

Determine the open intervals on which the graph of the function
f(x) =x2x2+625f ( x ) = \frac { x ^ { 2 } } { x ^ { 2 } + 625 } is concave upward or concave downward.


A) concave upward: (,2533) ,(2533,) ;\left( - \infty , - \frac { 25 \sqrt { 3 } } { 3 } \right) , \left( \frac { 25 \sqrt { 3 } } { 3 } , \infty \right) ; concave downward: (2533,2533) \left( - \frac { 25 \sqrt { 3 } } { 3 } , \frac { 25 \sqrt { 3 } } { 3 } \right)
B) concave upward: (2533,2533) ;\left( - \frac { 25 \sqrt { 3 } } { 3 } , \frac { 25 \sqrt { 3 } } { 3 } \right) ; concave downward: (,2533) ,(2533,) \left( - \infty , - \frac { 25 \sqrt { 3 } } { 3 } \right) , \left( \frac { 25 \sqrt { 3 } } { 3 } , \infty \right)
C) concave upward: (,0) ( - \infty , 0 ) ; concave downward: (0,) ( 0 , \infty )
D) concave upward: (6253,6253) ;\left( - \frac { 625 } { 3 } , \frac { 625 } { 3 } \right) ; concave downward: (,6253) ,(6253,) \left( - \infty , - \frac { 625 } { 3 } \right) , \left( \frac { 625 } { 3 } , \infty \right)
E) concave upward: (,6253) ,(6253,) ;\left( - \infty , - \frac { 625 } { 3 } \right) , \left( \frac { 625 } { 3 } , \infty \right) ; concave downward: (6253,6253) \left( - \frac { 625 } { 3 } , \frac { 625 } { 3 } \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions