Solved

 Find the function y=f(t) passing through the point (0,12) with the first derivative \text { Find the function } y = f ( t ) \text { passing through the point } ( 0,12 ) \text { with the first derivative }

Question 72

Multiple Choice

 Find the function y=f(t)  passing through the point (0,12)  with the first derivative \text { Find the function } y = f ( t ) \text { passing through the point } ( 0,12 ) \text { with the first derivative } dydt=67y\frac { d y } { d t } = \frac { 6 } { 7 } y


A) y(t) =e67t2+12y ( t ) = e ^ { \frac { 6 } { 7 } t ^ { 2 } } + 12
B) y(t) =67t2+12y ( t ) = \frac { 6 } { 7 } t ^ { 2 } + 12
C) y(t) =12e67t2y ( t ) = 12 e ^ { \frac { 6 } { 7 } t ^ { 2 } }
D) y(t) =12e67ty ( t ) = 12 e ^ { \frac { 6 } { 7 } t }
E) y(t) =e67t+12y(t) =e^{\frac{6}{7} t}+12

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions