Solved

Use a Table of Integrals to Find the Integral 49x4xdx\int \frac { \sqrt { 49 - x ^ { 4 } } } { x } d x

Question 103

Multiple Choice

Use a table of integrals to find the integral. 49x4xdx\int \frac { \sqrt { 49 - x ^ { 4 } } } { x } d x


A)
49x4xdx=12[49x47log(49x4+7) +49log(x2) ]+C\int \frac { \sqrt { 49 - x ^ { 4 } } } { x } d x = \frac { 1 } { 2 } \left[ \sqrt { 49 - x ^ { 4 } } - 7 \log \left( \sqrt { 49 - x ^ { 4 } } + 7 \right) + 49 \log \left( x ^ { 2 } \right) \right] + C
B)
49x4xdx=12[49x47log(49x4+7) +7log(x2) ]+C\int \frac { \sqrt { 49 - x ^ { 4 } } } { x } d x = \frac { 1 } { 2 } \left[ \sqrt { 49 - x ^ { 4 } } - 7 \log \left( \sqrt { 49 - x ^ { 4 } } + 7 \right) + 7 \log \left( x ^ { 2 } \right) \right] + C
C)
49x4xdx=12[49x449log(49x4+7) +7log(x2) ]+C\int \frac { \sqrt { 49 - x ^ { 4 } } } { x } d x = \frac { 1 } { 2 } \left[ \sqrt { 49 - x ^ { 4 } } - 49 \log \left( \sqrt { 49 - x ^ { 4 } } + 7 \right) + 7 \log \left( x ^ { 2 } \right) \right] + C
D)
49x4xdx=12[49x4log(49x4+1) +7log(x2) ]+C\int \frac { \sqrt { 49 - x ^ { 4 } } } { x } d x = \frac { 1 } { 2 } \left[ \sqrt { 49 - x ^ { 4 } } - \log \left( \sqrt { 49 - x ^ { 4 } } + 1 \right) + 7 \log \left( x ^ { 2 } \right) \right] + C
E)
49x4xdx=12[49x47log(49x4+1) +7log(x2) ]+C\int \frac { \sqrt { 49 - x ^ { 4 } } } { x } d x = \frac { 1 } { 2 } \left[ \sqrt { 49 - x ^ { 4 } } - 7 \log \left( \sqrt { 49 - x ^ { 4 } } + 1 \right) + 7 \log \left( x ^ { 2 } \right) \right] + C

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions