Solved

Find All Values of X for Which the Series Converges n=010(x810)n\sum _ { n = 0 } ^ { \infty } 10 \left( \frac { x - 8 } { 10 } \right) ^ { n }

Question 11

Multiple Choice

Find all values of x for which the series converges. For these values of x, write the sum of the series as a function of x. n=010(x810) n\sum _ { n = 0 } ^ { \infty } 10 \left( \frac { x - 8 } { 10 } \right) ^ { n }


A) 10018x,2<x<18- \frac { 100 } { 18 - x } , - 2 < x < 18
B) 10018x,2<x<18\frac { 100 } { 18 - x } , - 2 < x < 18
C) 10028+x,12<x<28\frac { 100 } { 28 + x } , - 12 < x < 28
D) 10028x,12<x<28\frac { 100 } { 28 - x } , - 12 < x < 28
E) The series diverges for all xx .

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions