Solved

Find a First-Degree Polynomial Function P1 Whose Value and Slope ff

Question 15

Multiple Choice

Find a first-degree polynomial function P1 whose value and slope agree with the value and slope of ff at x=cx = c . What is P1P _ { 1 } called?
f(x) =tanx,c=π6f ( x ) = \tan x , c = - \frac { \pi } { 6 }


A)
3y+3=4(x+π6) ;3 y + \sqrt { 3 } = - 4 \left( x + \frac { \pi } { 6 } \right) ; tangent line to y=f(x) y = f ( x ) at x=π6x = - \frac { \pi } { 6 }
B)
3y+3=4(x+π6) ;3 y + \sqrt { 3 } = 4 \left( x + \frac { \pi } { 6 } \right) ; secant line to y=f(x) y = f ( x ) at x=π6x = - \frac { \pi } { 6 }
C)
3y+2=4(x+π6) ;3 y + \sqrt { 2 } = 4 \left( x + \frac { \pi } { 6 } \right) ; tangent line to y=f(x) y = f ( x ) at x=π6x = - \frac { \pi } { 6 }
D)
3x+3=4(y+π6) ;3 x + \sqrt { 3 } = 4 \left( y + \frac { \pi } { 6 } \right) ; differential of y=f(x) y = f ( x ) at x=π6x = - \frac { \pi } { 6 }
E)
3y+3=4(x+π6) ;3 y + \sqrt { 3 } = 4 \left( x + \frac { \pi } { 6 } \right) ; tangent line to y=f(x) y = f ( x ) at x=π6x = - \frac { \pi } { 6 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions