Solved

Find the Maclaurin Polynomial of Degree Two for the Function f(x)=sec(11x)f ( x ) = \sec ( 11 x )

Question 40

Multiple Choice

Find the Maclaurin polynomial of degree two for the function f(x) =sec(11x) f ( x ) = \sec ( 11 x )


A) P2(x) =1+1214x2P _ { 2 } ( x ) = 1 + \frac { 121 } { 4 } x ^ { 2 }
B) P2(x) =11212x2P _ { 2 } ( x ) = 1 - \frac { 121 } { 2 } x ^ { 2 }
C) P2(x) =1+1212x2P _ { 2 } ( x ) = 1 + \frac { 121 } { 2 } x ^ { 2 }
D) P2(x) =x+1212x2P _ { 2 } ( x ) = x + \frac { 121 } { 2 } x ^ { 2 }
E) P2(x) =x1212x2P _ { 2 } ( x ) = x - \frac { 121 } { 2 } x ^ { 2 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions