Solved

 What is P1, a first-degree polynomial function whose value and slope agree with the \text { What is } P _ { 1 } \text {, a first-degree polynomial function whose value and slope agree with the }

Question 42

Multiple Choice

 What is P1, a first-degree polynomial function whose value and slope agree with the \text { What is } P _ { 1 } \text {, a first-degree polynomial function whose value and slope agree with the } value and slope of f(x) =10tan(x) f ( x ) = 10 \tan ( x ) at x=π4x = \frac { \pi } { 4 } ?


A) P1P _ { 1 } is the tangent line to the curve f(x) =10tan(x) f ( x ) = 10 \tan ( x ) at the point (10,π4) \left( 10 , \frac { \pi } { 4 } \right) .
B) P1P _ { 1 } is the tangent line to the curve f(x) =10tan(x) f ( x ) = 10 \tan ( x ) at the point (π4,10) \left( \frac { \pi } { 4 } , 10 \right) .
C) P1P _ { 1 } is the tangent line to the curve f(x) =10tan(x) f ( x ) = 10 \tan ( x ) at the point (13,π4) \left( 13 , \frac { \pi } { 4 } \right) .
D) P1P _ { 1 } is the tangent line to the curve f(x) =10tan(x) f ( x ) = 10 \tan ( x ) at the point (10,π4) \left( 10 , - \frac { \pi } { 4 } \right) .
E) P1P _ { 1 } is the tangent line to the curve f(x) =10tan(x) f ( x ) = 10 \tan ( x ) at the point (π4,10) \left( \frac { \pi } { 4 } , - 10 \right) .

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions