Solved

Find a Geometric Power Series for the Function Centered at 0

Question 4

Multiple Choice

Find a geometric power series for the function centered at 0, (i) by the technique shown in Examples 1 and 2 and (ii) by long division. f(x) =104xf ( x ) = \frac { 10 } { 4 - x }


A)
n=052(x4) n,x<4\sum _ { n = 0 } ^ { \infty } \frac { 5 } { 2 } \left( \frac { x } { 4 } \right) ^ { n } , | x | < 4
B)
n=014(x4) n,x<4\sum _ { n = 0 } ^ { \infty } \frac { 1 } { 4 } \left( \frac { x } { 4 } \right) ^ { n } , | x | < 4
C)
n=010(x4) n,x<4\sum _ { n = 0 } ^ { \infty } 10 \left( - \frac { x } { 4 } \right) ^ { n } , | x | < 4
D)
n=052(4x) n,x<4\sum _ { n = 0 } ^ { \infty } \frac { 5 } { 2 } ( - 4 x ) ^ { n } , | x | < 4
E)
n=052(x) n,x<1\sum _ { n = 0 } ^ { \infty } \frac { 5 } { 2 } ( - x ) ^ { n } , | x | < 1

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions