Solved

Use the Power Series 11x=n=0xn,x<1\frac { 1 } { 1 - x } = \sum _ { n = 0 } ^ { \infty } x ^ { n } , | x | < 1

Question 98

Multiple Choice

Use the power series 11x=n=0xn,x<1\frac { 1 } { 1 - x } = \sum _ { n = 0 } ^ { \infty } x ^ { n } , | x | < 1
to determine a power series for the function f(x) =5x(15x) 2f ( x ) = \frac { 5 x } { ( 1 - 5 x ) ^ { 2 } } .


A) n=1n(1) n(5x) n+1\sum _ { n = 1 } ^ { \infty } n ( - 1 ) ^ { n } ( 5 x ) ^ { n + 1 }
B) n=1n(1) n(5x) n\sum _ { n = 1 } ^ { \infty } n ( - 1 ) ^ { n } ( 5 x ) ^ { n }
C) n=1n(5x) n\sum _ { n = 1 } ^ { \infty } n ( 5 x ) ^ { n }
D) n=1n(5x) n1\sum _ { n = 1 } ^ { \infty } n ( 5 x ) ^ { n - 1 }
E) n=1n(5x) n+1\sum _ { n = 1 } ^ { \infty } n ( 5 x ) ^ { n + 1 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions