Solved

Use the Definition to Find the Taylor Series Centered At c

Question 95

Multiple Choice

Use the definition to find the Taylor series centered at c=1 for the function c = 1 \text { for the function } f(x) =1xf ( x ) = \frac { 1 } { x }


A)
1x=n=0(1) nxn\frac { 1 } { x } = \sum _ { n = 0 } ^ { \infty } ( - 1 ) ^ { n } x ^ { n }
B)
1x=n=1(1) n(x+1) n\frac { 1 } { x } = \sum _ { n = 1 } ^ { \infty } ( - 1 ) ^ { n } ( x + 1 ) ^ { n }
C)
1x=n=0(1) n+1(x1) n\frac { 1 } { x } = \sum _ { n = 0 } ^ { \infty } ( - 1 ) ^ { n + 1 } ( x - 1 ) ^ { n }
D)
1x=n=1(1) n(x) n\frac { 1 } { x } = \sum _ { n = 1 } ^ { \infty } ( - 1 ) ^ { n } ( x ) ^ { n }
E)
1x=n=0(1) n(x1) n\frac { 1 } { x } = \sum _ { n = 0 } ^ { \infty } ( - 1 ) ^ { n } ( x - 1 ) ^ { n }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions