Solved

Use the Definition to Find the Taylor Series Centered At c

Question 25

Multiple Choice

Use the definition to find the Taylor series centered at c=π4 for the function c = \frac { \pi } { 4 } \text { for the function } f(x) =cosxf ( x ) = \cos x


A)
cosx=22n=0(1) n(n1) 2(x+π4) nn!\cos x = \frac { \sqrt { 2 } } { 2 } \sum _ { n = 0 } ^ { \infty } \frac { ( - 1 ) ^ { \frac { n ( n - 1 ) } { 2 } } \left( x + \frac { \pi } { 4 } \right) ^ { n } } { n ! }
B)
cosx=22n=0(1) n(n+1) 2(xπ4) nn!\cos x = \frac { \sqrt { 2 } } { 2 } \sum _ { n = 0 } ^ { \infty } \frac { ( - 1 ) ^ { \frac { n ( n + 1 ) } { 2 } } \left( x - \frac { \pi } { 4 } \right) ^ { n } } { n ! }
C)
cosx=2n=0(1) n(xπ4) nn!\cos x = \sqrt { 2 } \sum _ { n = 0 } ^ { \infty } \frac { ( - 1 ) ^ { n } \left( x - \frac { \pi } { 4 } \right) ^ { n } } { n ! }
D)
cosx=2n=0(1) n(n1) 2(x+π4) nn!\cos x = \sqrt { 2 } \sum _ { n = 0 } ^ { \infty } \frac { ( - 1 ) ^ { \frac { n ( n - 1 ) } { 2 } } \left( x + \frac { \pi } { 4 } \right) ^ { n } } { n ! }
E)
cosx=22n=0(1) n(xπ4) nn!\cos x = \frac { \sqrt { 2 } } { 2 } \sum _ { n = 0 } ^ { \infty } \frac { ( - 1 ) ^ { n } \left( x - \frac { \pi } { 4 } \right) ^ { n } } { n ! }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions