Solved

Use the Definition to Find the Taylor Series Centered At c

Question 26

Multiple Choice

Use the definition to find the Taylor series centered at
c=0 for the function c = 0 \text { for the function } f(x) =3ln(x2+1) f ( x ) = 3 \ln \left( x ^ { 2 } + 1 \right)


A) 3ln(x2+1) =n=0(3x) 2n+2n+13 \ln \left( x ^ { 2 } + 1 \right) = \sum _ { n = 0 } ^ { \infty } \frac { ( 3 x ) ^ { 2 n + 2 } } { n + 1 }
B) 3ln(x2+1) =3n=0(1) nxn+1n+13 \ln \left( x ^ { 2 } + 1 \right) = 3 \sum _ { n = 0 } ^ { \infty } ( - 1 ) ^ { n } \frac { x ^ { n + 1 } } { n + 1 }
C) 3ln(x2+1) =3n=0(1) nx2n+2n+13 \ln \left( x ^ { 2 } + 1 \right) = 3 \sum _ { n = 0 } ^ { \infty } ( - 1 ) ^ { n } \frac { x ^ { 2 n + 2 } } { n + 1 }
D) 3ln(x2+1) =3n=0x2n+2n3 \ln \left( x ^ { 2 } + 1 \right) = 3 \sum _ { n = 0 } ^ { \infty } \frac { x ^ { 2 n + 2 } } { n }
E) 3ln(x2+1) =n=0(3x) n+1n+13 \ln \left( x ^ { 2 } + 1 \right) = \sum _ { n = 0 } ^ { \infty } \frac { ( 3 x ) ^ { n + 1 } } { n + 1 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions