Solved

Find the Maclaurin Series for the Function f(x)=sin7xf ( x ) = \sin 7 x

Question 152

Multiple Choice

Find the Maclaurin series for the function f(x) =sin7xf ( x ) = \sin 7 x


A) sin7x=n=0(1) n(7x) 2n+1(2n+1) !\sin 7 x = \sum _ { n = 0 } ^ { \infty } \frac { ( - 1 ) ^ { n } ( 7 x ) ^ { 2 n + 1 } } { ( 2 n + 1 ) ! }
B)
sin7x=n=0(1) n(7x) 2n(2n) !\sin 7 x = \sum _ { n = 0 } ^ { \infty } \frac { ( - 1 ) ^ { n } ( 7 x ) ^ { 2 n } } { ( 2 n ) ! }
C)
sin7x=n=0(7x) 2n(2n) !\sin 7 x = \sum _ { n = 0 } ^ { \infty } \frac { ( 7 x ) ^ { 2 n } } { ( 2 n ) ! }
D)
sin7x=n=0(1) n(7x) 2n+1(n+1) !\sin 7 x = \sum _ { n = 0 } ^ { \infty } \frac { ( - 1 ) ^ { n } ( 7 x ) ^ { 2 n + 1 } } { ( n + 1 ) ! }
E)
sin7x=n=0(7x) 2n+1(2n+1) !\sin 7 x = \sum _ { n = 0 } ^ { \infty } \frac { ( 7 x ) ^ { 2 n + 1 } } { ( 2 n + 1 ) ! }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions