Solved

For the Function f(x)=8(8x+1)2=ddx[18x+1]f ( x ) = - \frac { 8 } { ( 8 x + 1 ) ^ { 2 } } = \frac { d } { d x } \left[ \frac { 1 } { 8 x + 1 } \right]

Question 148

Multiple Choice

 Use the power series 11+x=n=0(1) nxn to determine a power series centered at 0\text { Use the power series } \frac { 1 } { 1 + x } = \sum _ { n = 0 } ^ { \infty } ( - 1 ) ^ { n } x ^ { n } \text { to determine a power series centered at } 0
for the function f(x) =8(8x+1) 2=ddx[18x+1]f ( x ) = - \frac { 8 } { ( 8 x + 1 ) ^ { 2 } } = \frac { d } { d x } \left[ \frac { 1 } { 8 x + 1 } \right]


A) n=0(8) nnxn1\sum _ { n = 0 } ^ { \infty } ( - 8 ) ^ { n } n x ^ { n - 1 }
B) n=0(8) nnxn1\sum _ { n = 0 } ^ { \infty } ( 8 ) ^ { n } n x ^ { n - 1 }
C) n=0(8) nxn\sum _ { n = 0 } ^ { \infty } ( - 8 ) ^ { n } x ^ { n }
D) n=0(8) nxn\sum _ { n = 0 } ^ { \infty } ( - 8 ) ^ { n } x ^ { n } .
E) n=0(8) n(n1) xn1\sum _ { n = 0 } ^ { \infty } ( - 8 ) ^ { n } ( n - 1 ) x ^ { n - 1 } .

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions