Solved

Point Corresponding to T = 5 x=t+10y=t2+4t\begin{array} { l } x = t + 10 \\y = t ^ { 2 } + 4 t\end{array}

Question 51

Multiple Choice

 Find dydx and d2ydt2 if possible, and find the slope and concavity (if possible)  at the \text { Find } \frac { d y } { d x } \text { and } \frac { d ^ { 2 } y } { d t ^ { 2 } } \text { if possible, and find the slope and concavity (if possible) at the } point corresponding to t = 5.
x=t+10y=t2+4t\begin{array} { l } x = t + 10 \\y = t ^ { 2 } + 4 t\end{array}


A) dydx=13t3+2t2,d2ydx2=3t2+4t\frac { d y } { d x } = \frac { 1 } { 3 } t ^ { 3 } + 2 t ^ { 2 } , \frac { d ^ { 2 } y } { d x ^ { 2 } } = 3 t ^ { 2 } + 4 t , at t=5t = 5 : slope 3256- \frac { 325 } { 6 } and concave up
B) dydx=2t+4,d2ydx2=2;\frac { d y } { d x } = - 2 t + 4 , \frac { d ^ { 2 } y } { d x ^ { 2 } } = - 2 ; at t=5t = 5 : slope 6- 6 and concave down
C) dydx=2t+4,d2ydx2=2\frac { d y } { d x } = 2 t + 4 , \frac { d ^ { 2 } y } { d x ^ { 2 } } = 2 ; at t=5t = 5 : slope 14 and concave up
D) dydx=2t+4,d2ydx2=2\frac { d y } { d x } = - 2 t + 4 , \frac { d ^ { 2 } y } { d x ^ { 2 } } = - 2 ; at t=5t = 5 : slope 6 and concave down
E) dydx=13t3+2t2,d2ydx2=3t2+4t\frac { d y } { d x } = \frac { 1 } { 3 } t ^ { 3 } + 2 t ^ { 2 } , \frac { d ^ { 2 } y } { d x ^ { 2 } } = 3 t ^ { 2 } + 4 t , at t=5:t = 5 : slope 3256\frac { 325 } { 6 } and concave up

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions