Solved

 Find the area of the surface formed by revolving about the θ=π2 axis the following \text { Find the area of the surface formed by revolving about the } \theta = \frac { \pi } { 2 } \text { axis the following }

Question 48

Multiple Choice

 Find the area of the surface formed by revolving about the θ=π2 axis the following \text { Find the area of the surface formed by revolving about the } \theta = \frac { \pi } { 2 } \text { axis the following } curve over the given interval. r=e8θ,0θπ2r = e ^ { 8 \theta } , 0 \leq \theta \leq \frac { \pi } { 2 }


A) 265(e8x16) π385\frac { 2 \sqrt { 65 } \left( e ^ { 8 x } - 16 \right) \pi } { 385 }
B) 265(e8x16) π257\frac { 2 \sqrt { 65 } \left( e ^ { 8 x } - 16 \right) \pi } { 257 }
C) 265(e8x16) π129\frac { 2 \sqrt { 65 } \left( e ^ { 8 x } - 16 \right) \pi } { 129 }
D) 265(e8x8) π129\frac { 2 \sqrt { 65 } \left( e ^ { 8 x } - 8 \right) \pi } { 129 }
E) 265(e8x8) π257\frac { 2 \sqrt { 65 } \left( e ^ { 8 x } - 8 \right) \pi } { 257 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions