Solved

Find the Domain of the Vector-Valued Function Given Below r(t)=F(t)×G(t)\mathbf { r } ( t ) = \mathbf { F } ( t ) \times \mathbf { G } ( t )

Question 32

Multiple Choice

Find the domain of the vector-valued function given below. r(t) =F(t) ×G(t) \mathbf { r } ( t ) = \mathbf { F } ( t ) \times \mathbf { G } ( t ) where
F(t) =t3i+1t+4j+(t4) kG(t) =1t2i+tj+(t1) k\begin{array} { l } \mathbf { F } ( t ) = t ^ { 3 } \mathbf { i } + \frac { 1 } { t + 4 } \mathbf { j } + ( t - 4 ) \mathbf { k } \\\mathbf { G } ( t ) = \sqrt { 1 - t ^ { 2 } } \mathbf { i } + t \mathbf { j } + ( t - 1 ) \mathbf { k }\end{array}


A) (,) ( - \infty , \infty )
B) [1,1][ - 1,1 ]
C) [4,) [ - 4 , \infty )
D) [0,1][ 0,1 ]
E) [1,) [ 1 , \infty )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions