Solved

In Space Find the Velocity v(t)\mathbf { v } ( t )

Question 35

Multiple Choice

 The position vector r(t) =2cost,4sint,t2 describes the path of an object moving \text { The position vector } \mathbf { r } ( t ) = \left\langle 2 \cos t , 4 \sin t , t ^ { 2 } \right\rangle \text { describes the path of an object moving } in space. Find the velocity v(t) \mathbf { v } ( t ) of the object.


A) v(t) =2sinti4costj+k\mathbf { v } ( t ) = 2 \sin t \mathbf { i } - 4 \cos t \mathbf { j } + \mathbf { k }
B) v(t) =2costi4sintj+2k\mathbf { v } ( t ) = - 2 \cos t \mathbf { i } - 4 \sin t \mathbf { j } + 2 \mathbf { k }
C) v(t) =2sinti4costj+k\mathbf { v } ( t ) = - 2 \sin t \mathbf { i } - 4 \cos t \mathbf { j } + \mathbf { k }
D) v(t) =2sinti+4costj+2tk\mathbf { v } ( t ) = - 2 \sin t \mathbf { i } + 4 \cos t \mathbf { j } + 2 t \mathbf { k }
E) v(t) =2costi+4sintj+k\mathbf { v } ( t ) = - 2 \cos t \mathbf { i } + 4 \sin t \mathbf { j } + \mathbf { k }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions