Solved

Find the Principle Unit Normal Vector to the Curve Given r(t)=ti+4t2j,t=3\mathbf { r } ( t ) = t \mathbf { i } + 4 t ^ { 2 } \mathbf { j } , \quad t = 3

Question 82

Multiple Choice

Find the principle unit normal vector to the curve given below at the specified point. r(t) =ti+4t2j,t=3\mathbf { r } ( t ) = t \mathbf { i } + 4 t ^ { 2 } \mathbf { j } , \quad t = 3


A) N(3) =24145i1145jN ( 3 ) = \frac { - 24 } { \sqrt { 145 } } \mathbf { i } - \frac { 1 } { \sqrt { 145 } } \mathbf { j }
B) N(3) =24145i+1145jN ( 3 ) = \frac { - 24 } { \sqrt { 145 } } \mathbf { i } + \frac { 1 } { \sqrt { 145 } } \mathbf { j }
C) N(3) =24577i1577jN ( 3 ) = \frac { - 24 } { \sqrt { 577 } } \mathbf { i } - \frac { 1 } { \sqrt { 577 } } \mathbf { j }
D) N(3) =24577i+1577jN ( 3 ) = \frac { - 24 } { \sqrt { 577 } } \mathbf { i } + \frac { 1 } { \sqrt { 577 } } \mathbf { j }
E) N(3) =24577i1577jN ( 3 ) = \frac { 24 } { \sqrt { 577 } } \mathbf { i } - \frac { 1 } { \sqrt { 577 } } \mathbf { j }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions