Solved

The Smaller the Curvature in a Bend of a Road y=13x3(x and y are measured in miles) can safely go 25 miles per hour at y = \frac { 1 } { 3 } x ^ { 3 } ( x \text { and } y \text { are measured in miles) can safely go } 25 \text { miles per hour at }

Question 75

Multiple Choice

The smaller the curvature in a bend of a road, the faster a car can travel. Assume that the maximum speed around a turn is inversely proportional to the square root of the curvature. A car Moving on the path y=13x3(x and y are measured in miles)  can safely go 25 miles per hour at y = \frac { 1 } { 3 } x ^ { 3 } ( x \text { and } y \text { are measured in miles) can safely go } 25 \text { miles per hour at } (1,13) \left( 1 , \frac { 1 } { 3 } \right) . How fast can it go at (52,12524) \left( \frac { 5 } { 2 } , \frac { 125 } { 24 } \right) ? Round your answer to two decimal places.


A) 259.31mi/h259.31 \mathrm { mi } / \mathrm { h }
B) 149.71mi/h149.71 \mathrm { mi } / \mathrm { h }
C) 119.77mi/h119.77 \mathrm { mi } / \mathrm { h }
D) 75.30mi/h75.30 \mathrm { mi } / \mathrm { h }
E) 299.42mi/h299.42 \mathrm { mi } / \mathrm { h }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions