Solved

Find the Unit Tangent Vector to the Curve Given Below r(t)=6ti+4t2j,t=4\mathbf { r } ( t ) = - 6 t \mathbf { i } + 4 t ^ { 2 } \mathbf { j } , t = 4

Question 72

Multiple Choice

Find the unit tangent vector to the curve given below at the specified point. r(t) =6ti+4t2j,t=4\mathbf { r } ( t ) = - 6 t \mathbf { i } + 4 t ^ { 2 } \mathbf { j } , t = 4


A) T(4) =61060i+41060j\mathbf T ( 4 ) = \frac { - 6 } { \sqrt { 1060 } } \mathbf { i } + \frac { 4 } { \sqrt { 1060 } } \mathbf { j }
B) T(4) =61060i+321060j\mathbf { T } ( 4 ) = \frac { - 6 } { \sqrt { 1060 } } \mathbf { i } + \frac { 32 } { \sqrt { 1060 } } \mathbf { j }
C) T(4) =121060i+321060j\mathbf T ( 4 ) = \frac { - 12 } { \sqrt { 1060 } } \mathbf { i } + \frac { 32 } { \sqrt { 1060 } } \mathbf { j }
D) T(4) =61060j+321060i\mathbf { T } ( 4 ) = \frac { - 6 } { \sqrt { 1060 } } \mathbf { j } + \frac { 32 } { \sqrt { 1060 } } \mathbf { i }
E) T(4) =41060i+321060j\mathbf T ( 4 ) = \frac { 4 } { \sqrt { 1060 } } \mathbf { i } + \frac { 32 } { \sqrt { 1060 } } \mathbf { j }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions