Solved

Find the Partial Derivative zy for the function z=cos(x5+y5)\frac { \partial z } { \partial y } \text { for the function } z = \cos \left( x ^ { 5 } + y ^ { 5 } \right)

Question 51

Multiple Choice

Find the partial derivative zy for the function z=cos(x5+y5) \frac { \partial z } { \partial y } \text { for the function } z = \cos \left( x ^ { 5 } + y ^ { 5 } \right)


A) zy=5y4sin(x5+y5) \frac { \partial z } { \partial y } = - 5 y ^ { 4 } \sin \left( x ^ { 5 } + y ^ { 5 } \right)
B) zy=5y6sin(x5+y5) \frac { \partial z } { \partial y } = - 5 y ^ { 6 } \sin \left( x ^ { 5 } + y ^ { 5 } \right)
C) zy=5y6sin(x6+y6) \frac { \partial z } { \partial y } = 5 y ^ { 6 } \sin \left( x ^ { 6 } + y ^ { 6 } \right)
D) zy=5y6cos(x6+y6) \frac { \partial z } { \partial y } = 5 y ^ { 6 } \cos \left( x ^ { 6 } + y ^ { 6 } \right)
E) zy=5y4cos(x5+y5) \frac { \partial z } { \partial y } = 5 y ^ { 4 } \cos \left( x ^ { 5 } + y ^ { 5 } \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions