Solved

A) dwdt=8t81t2\frac { d w } { d t } = 8 t ^ { 8 } - \sqrt { 1 - t ^ { 2 } }

Question 50

Multiple Choice

 Let w=xycosz, where x=t3,y=t5, and z=arccost. Find dwdt\text { Let } w = x y \cos z \text {, where } x = t ^ { 3 } , y = t ^ { 5 } \text {, and } z = \arccos t \text {. Find } \frac { d w } { d t } \text {. }


A) dwdt=8t81t2\frac { d w } { d t } = 8 t ^ { 8 } - \sqrt { 1 - t ^ { 2 } }
B) dwdt=8t8+1t2\frac { d w } { d t } = 8 t ^ { 8 } + \sqrt { 1 - t ^ { 2 } }
C) dwdt=t8(8+1t2) \frac { d w } { d t } = t ^ { 8 } \left( 8 + \sqrt { 1 - t ^ { 2 } } \right)
D) dwdt=9t8\frac { d w } { d t } = 9 t ^ { 8 }
E) dwdt=t8(81t2) \frac { d w } { d t } = t ^ { 8 } \left( 8 - \sqrt { 1 - t ^ { 2 } } \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions