Solved

Find the Total Differential for the Function w=eycos(x)+z4w = e ^ { y } \cos ( x ) + z ^ { 4 }

Question 15

Multiple Choice

Find the total differential for the function w=eycos(x) +z4w = e ^ { y } \cos ( x ) + z ^ { 4 }


A) dw=2eysin(x) dx+eycos(x) dy+4z5dz d w = - 2 e ^ { y } \sin ( x ) d x + e ^ { y } \cos ( x ) d y + 4 z ^ { 5 } d z
B) dw=eycos(x) dx+eycos(x) dy+4z3dzd w = e ^ { y } \cos ( x ) d x + e ^ { y } \cos ( x ) d y + 4 z ^ { 3 } d z
C) dw=eysin(x) dxeycos(x) dy4z3dzd w = e ^ { y } \sin ( x ) d x - e ^ { y } \cos ( x ) d y - 4 z ^ { 3 } d z
D) dw=eycos(x) dx+eycos(x) dy+4z5dzd w = - e ^ { y } \cos ( x ) d x + e ^ { y } \cos ( x ) d y + 4 z ^ { 5 } d z
E) dw=eysin(x) dx+eycos(x) dy+4z3dzd w = - e ^ { y } \sin ( x ) d x + e ^ { y } \cos ( x ) d y + 4 z ^ { 3 } d z

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions