Solved

Use the Gradient to Find the Directional Derivative of the Function

Question 72

Multiple Choice

Use the gradient to find the directional derivative of the function at P in the direction of Q. f(x,y) =sin(7x) cosy,P(0,0) ,Q(π7,π) f ( x , y ) = \sin ( 7 x ) \cos y , P ( 0,0 ) , Q \left( \frac { \pi } { 7 } , \pi \right)


A) π\pi
B) π(sin(7x) cosy+cos(7x) siny) \pi ( \sin ( 7 x ) \cos y + \cos ( 7 x ) \sin y )
C) π(cos(7x) cosysin(7x) siny) \pi ( \cos ( 7 x ) \cos y - \sin ( 7 x ) \sin y )
D) 150\frac { 1 } { \sqrt { 50 } }
E) 750\frac { 7 } { \sqrt { 50 } }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions