Solved

Find the Area of the Surface Given By z=f(x,y) over the region Rz = f ( x , y ) \text { over the region } R \text {. }

Question 89

Multiple Choice

Find the area of the surface given by z=f(x,y)  over the region Rz = f ( x , y ) \text { over the region } R \text {. } f(x,y) =xyR={(x,y) :x2+y2100}\begin{array} { l } f ( x , y ) = x y \\R = \left\{ ( x , y ) : x ^ { 2 } + y ^ { 2 } \leq 100 \right\}\end{array}


A) 23(1011011) π\frac { 2 } { 3 } ( 101 \sqrt { 101 } - 1 ) \pi
B) 23(1101101) π\frac { 2 } { 3 } ( 1 - 101 \sqrt { 101 } ) \pi
C) 23(1011011) \frac { 2 } { 3 } ( 101 \sqrt { 101 } - 1 )
D) 34(1011011) π\frac { 3 } { 4 } ( 101 \sqrt { 101 } - 1 ) \pi
E) 23(1001011) π\frac { 2 } { 3 } ( 100 \sqrt { 101 } - 1 ) \pi

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions