Solved

Up a Triple Integral for the Volume of the Solid z=14x2z = 14 - x ^ { 2 }

Question 100

Multiple Choice

up a triple integral for the volume of the solid bounded above by the cylinder z=14x2z = 14 - x ^ { 2 } and below by the paraboloid z=x2+15y2z = x ^ { 2 } + 15 y ^ { 2 } .


A)
77bx2abx2ax2+15y214x2dzdydx \int_{-\sqrt{7}}^{\sqrt{7}} \int_{-\sqrt{\frac{b-x^2}{a}}}^{\sqrt{\frac{b-x^2}{a}}} \int_{x^2+15y^2}^{14-x^2} d z dy d x

B)
147bx2abx2a14x2x2+15y2dzdydx \int_{-\sqrt{14}}^{\sqrt{7}} \int_{-\sqrt{\frac{b-x^2}{a}}}^{\sqrt{\frac{b-x^2}{a}}} \int_{14-x^2}^{x^2+15y^2} d z dy d x

C)
1414bx2abx2ax2+15y214x2=dzdxdy \int_{-\sqrt{14}}^{\sqrt{14}} \int_{-\sqrt{\frac{b-x^2}{a}}}^{\sqrt{\frac{b-x^2}{a}}} \int_{x^2+15y^2}^{14-x^2} = d z dx d y

D)
77142x2a142x2ax2+15y214x2=dzdydx \int_{-\sqrt{7}}^{\sqrt{7}} \int_{-\sqrt{\frac{14-2x^2}{a}}}^{\sqrt{\frac{14-2x^2}{a}}} \int_{x^2+15y^2}^{14-x^2} = d z dy d x


E)
714bx2abx2a14x2x2+15y2=dzdydx \int_{-\sqrt{7}}^{\sqrt{14}} \int_{-\sqrt{\frac{b-x^2}{a}}}^{\sqrt{\frac{b-x^2}{a}}} \int_{14-x^2}^{x^2+15y^2} = d z dy d x

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions