Solved

Set Up a Triple Integral That Gives the Moment of Inertia

Question 110

Multiple Choice

Set up a triple integral that gives the moment of inertia about the z-axis of the solid z \text {-axis of the solid } region QQ of density given below.
ρ(x,y,z) =x2+y2+z2Q={4x4,4y4,0z1y}\begin{array} { l } \rho ( x , y , z ) = \sqrt { x ^ { 2 } + y ^ { 2 } + z ^ { 2 } } \\Q = \{ - 4 \leq x \leq 4 , - 4 \leq y \leq 4,0 \leq z \leq 1 - y \}\end{array}


A)
444401x(x2+y2) x2+y2+z2dzdydx \int_{-4}^{4}\int_{-4}^{4}\int_{0}^{1-x}\left(x^{2}+y^{2}\right) \sqrt{x^{2}+y^{2}+z^{2}} d z d y d x

B)
444401x(x2+y2) x2+y2+z2dydzdx \int_{-4}^{4}\int_{-4}^{4}\int_{0}^{1-x}\left(x^{2}+y^{2}\right) \sqrt{x^{2}+y^{2}+z^{2}} d y d z d x
C)
444401y(x2+y2) x2+y2+z2dzdydx \int_{-4}^{4}\int_{-4}^{4}\int_{0}^{1-y}\left(x^{2}+y^{2}\right) \sqrt{x^{2}+y^{2}+z^{2}} d z d y d x

D)
444401x(x2+z2) x2+y2+z2dzdydx \int_{-4}^{4}\int_{-4}^{4}\int_{0}^{1-x}\left(x^{2}+z^{2}\right) \sqrt{x^{2}+y^{2}+z^{2}} d z d y d x

E)
444401y(z2+y2) x2+y2+z2dzdydx \int_{-4}^{4}\int_{-4}^{4}\int_{0}^{1-y}\left(z^{2}+y^{2}\right) \sqrt{x^{2}+y^{2}+z^{2}} d z d y d x

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions