Solved

Determine the Location of the Horizontal Axis ya for figure (b) at which a vertical y _ { a } \text { for figure (b) at which a vertical }

Question 108

Multiple Choice

Determine the location of the horizontal axis ya for figure (b)  at which a vertical y _ { a } \text { for figure (b) at which a vertical } gate in a dam is to be hinged so that there is no moment causing rotation under the indicated loading (see figure (a) ) . The model for yay _ { a } is ya=yˉIyˉhAy _ { a } = \bar { y } - \frac { I _ { \bar { y } } } { h A } where yˉ\bar { y } is the yy -coordinate of the centroid of the gate, LyL _ { y } is the moment of inertia of the gate about the line y=yˉ,hy = \bar { y } , h is the depth of the centroid below the surface, and AA is the area of the gate.
 Determine the location of the horizontal axis  y _ { a } \text { for figure (b)  at which a vertical }  gate in a dam is to be hinged so that there is no moment causing rotation under the indicated loading (see figure (a) ) . The model for  y _ { a }  is  y _ { a } = \bar { y } - \frac { I _ { \bar { y } } } { h A }  where  \bar { y }  is the  y -coordinate of the centroid of the gate,  L _ { y }  is the moment of inertia of the gate about the line  y = \bar { y } , h  is the depth of the centroid below the surface, and  A  is the area of the gate.    A)   y _ { a } = \frac { a ( 3 L - 2 a )  } { 2 ( 3 L + a )  }  B)  y _ { a } = \frac { 2 L } { 3 }  C)  y _ { a } = \frac { L } { 3 }  D)  y _ { a } = \frac { L } { 2 }  E)  y _ { a } = \frac { a ( 2 L + 3 a )  } { 3 ( 3 L - a )  }


A) ya=a(3L2a) 2(3L+a) y _ { a } = \frac { a ( 3 L - 2 a ) } { 2 ( 3 L + a ) }
B) ya=2L3y _ { a } = \frac { 2 L } { 3 }
C) ya=L3y _ { a } = \frac { L } { 3 }
D) ya=L2y _ { a } = \frac { L } { 2 }
E) ya=a(2L+3a) 3(3La) y _ { a } = \frac { a ( 2 L + 3 a ) } { 3 ( 3 L - a ) }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions