Solved

Find the Average Value Of f(x,y,z)=x3+y2+z4 over the region Q, where Q is a f ( x , y , z ) = x ^ { 3 } + y ^ { 2 } + z ^ { 4 } \text { over the region } Q \text {, where } Q \text { is a }

Question 7

Multiple Choice

Find the average value of
f(x,y,z) =x3+y2+z4 over the region Q, where Q is a f ( x , y , z ) = x ^ { 3 } + y ^ { 2 } + z ^ { 4 } \text { over the region } Q \text {, where } Q \text { is a } cube in the first octant bounded by the coordinate planes, and the planes x=4,y=1x = 4 , y = 1 , and z=2z = 2 . The average value of a continuous function f(x,y,z) f ( x , y , z ) over a solid region QQ is 1VQf(x,y,z) dV \frac{1}{V} \iiint_{Q} f(x, y, z) d V where VV is the volume of the solid region QQ .


A) 29315\frac { 293 } { 15 }
B) 31586\frac { 31 } { 586 }
C) 293308\frac { 293 } { 308 }
D) 308293\frac { 308 } { 293 }
E) 15293\frac { 15 } { 293 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions