Solved

 Find the average value of f(x,y,z)=x+y+z over the region Q, where Q is a \text { Find the average value of } f ( x , y , z ) = x + y + z \text { over the region } Q \text {, where } Q \text { is a }

Question 9

Multiple Choice

 Find the average value of f(x,y,z) =x+y+z over the region Q, where Q is a \text { Find the average value of } f ( x , y , z ) = x + y + z \text { over the region } Q \text {, where } Q \text { is a } tetrahedron in the first octant with vertices (0,0,0) ,(18,0,0) ,(0,18,0) ( 0,0,0 ) , ( 18,0,0 ) , ( 0,18,0 ) and (0,0,18) ( 0,0,18 ) . The average value of a continuous function f(x,y,z) f ( x , y , z ) over a solid region QQ is 1VQf(x,y,z) dV \frac{1}{V} \iiint_{Q} f(x, y, z) d V , where VV is the volume of the solid region QQ .


A) 556\frac { 55 } { 6 }
B) 547\frac { 54 } { 7 }
C) 545\frac { 54 } { 5 }
D) 272\frac { 27 } { 2 }
E) 554\frac { 55 } { 4 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions