Solved

Determine Whether the Vector Field Is Conservative F(x,y)=3yxi^x3y3j^\overrightarrow { \mathrm { F } } ( x , y ) = \frac { 3 y } { x } \hat { \mathbf { i } } - \frac { x ^ { 3 } } { y ^ { 3 } } \hat { \mathbf { j } }

Question 87

Multiple Choice

Determine whether the vector field is conservative. If it is, find a potential function for the vector field. F(x,y) =3yxi^x3y3j^\overrightarrow { \mathrm { F } } ( x , y ) = \frac { 3 y } { x } \hat { \mathbf { i } } - \frac { x ^ { 3 } } { y ^ { 3 } } \hat { \mathbf { j } }


A) conservative with potential function f(x,y) =3x3yf ( x , y ) = \frac { 3 x ^ { 3 } } { y }
B) conservative with potential function f(x,y) =x33yf ( x , y ) = \frac { x ^ { 3 } } { 3 y }
C) conservative with potential function f(x,y) =x34yf ( x , y ) = \frac { x ^ { 3 } } { 4 y }
D) conservative with potential function f(x,y) =4x3yf ( x , y ) = \frac { 4 x ^ { 3 } } { y }
E) not conservative

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions