Solved

Find the Curl of the Vector Field F(x,y,z)=(8yz)i^+xyzj^+4ezk^\overrightarrow { \mathbf { F } } ( x , y , z ) = ( 8 y - z ) \hat { \mathbf { i } } + x y z \hat { j } + 4 e ^ { z } \hat { \mathbf { k } }

Question 85

Multiple Choice

Find the curl of the vector field F(x,y,z) =(8yz) i^+xyzj^+4ezk^\overrightarrow { \mathbf { F } } ( x , y , z ) = ( 8 y - z ) \hat { \mathbf { i } } + x y z \hat { j } + 4 e ^ { z } \hat { \mathbf { k } }


A) curl(F) =xyi^j^+(yz8) k^\operatorname { curl } ( \overrightarrow { \mathbf { F } } ) = - x y \hat { \mathbf { i } } - \hat { \mathbf { j } } + ( y z - 8 ) \hat { \mathbf { k } }
B) curl(F) =xyi^j^+(8yz) k^\operatorname { curl } ( \overrightarrow { \mathbf { F } } ) = - x y \hat { \mathbf { i } } - \hat { \mathbf { j } } + ( 8 - y z ) \hat { \mathbf { k } }
C) curl(F) =xyi^+j^+(8yz) k^\operatorname { curl } ( \overrightarrow { \mathbf { F } } ) = - x y \hat { \mathbf { i } } + \hat { \mathbf { j } } + ( 8 - y z ) \hat { \mathbf { k } }
D) curl(F) =xyi^+j^+(yz8) k^\operatorname { curl } ( \overrightarrow { \mathbf { F } } ) = x y \hat { \mathbf { i } } + \hat { \mathbf { j } } + ( y z - 8 ) \hat { \mathbf { k } }
E) curl(F) =xyi^j^+(yz8) k^\operatorname { curl } ( \overrightarrow { \mathrm { F } } ) = x y \hat { \mathbf { i } } - \hat { \mathbf { j } } + ( y z - 8 ) \hat { \mathbf { k } }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions