Solved

Find a Piecewise Smooth Parametrization of the Path C Given

Question 100

Multiple Choice

Find a piecewise smooth parametrization of the path C given in the following graph.
 Find a piecewise smooth parametrization of the path C given in the following graph.     A)   \mathbf { r } ( t )  = \left\{ \begin{array} { l l } t \mathbf { i } + t \mathbf { j } & 0 \leq t \leq 2 \\ \left( 4 + t ^ { 2 } \right)  \mathbf { i } - 4 \mathbf { j } & 2 \leq t \leq 4 \\ \left( 8 - t ^ { 2 } \right)  \mathbf { j } & 4 \leq t \leq 10 \end{array} \right.   B)   \mathbf { r } ( t )  = \left\{ \begin{array} { l l } t \mathbf { i } - t ^ { 2 } \mathbf { j } & 0 \leq t \leq 2 \\ ( 4 + t )  \mathbf { i } + 4 \mathbf { j } & 2 \leq t \leq 4 \\ ( 8 + t )  \mathbf { j } & 4 \leq t \leq 8 \end{array} \right.   C)   \mathbf { r } ( t )  = \left\{ \begin{array} { l l }  t \mathbf { i } + t ^ { 2 } \mathbf { j } & 0 \leq t \leq 2 \\ ( 4 + t )  \mathbf { i } - 4 \mathbf { j } & 2 \leq t \leq 4 \\ \left( 8 - t ^ { 2 } \right)  \mathbf { j } & 4 \leq t \leq 8 \end{array} \right.   D)   \mathbf { r } ( t )  = \left\{ \begin{array} { l l }  t ^ { 2 } + t ^ { 2 } \mathbf { j } & 0 \leq t \leq 2 \\ ( 4 - t )  \mathbf { i } + 4 \mathbf { j } & 2 \leq t \leq 4 \\ ( 8 - t )  \mathbf { j } & 4 \leq t \leq 8 \end{array} \right.   E)   \mathbf { r } ( t )  = \left\{ \begin{array} { l l }  t \mathbf { i } + t \mathbf { j } & 0 \leq t \leq 2 \\ \left( 4 - t ^ { 2 } \right)  \mathbf { i } + 4 \mathbf { j } & 2 \leq t \leq 4 \\ \left( 8 - t ^ { 2 } \right)  \mathbf { j } & 4 \leq t \leq 10 \end{array} \right.


A) r(t) ={ti+tj0t2(4+t2) i4j2t4(8t2) j4t10\mathbf { r } ( t ) = \left\{ \begin{array} { l l } t \mathbf { i } + t \mathbf { j } & 0 \leq t \leq 2 \\ \left( 4 + t ^ { 2 } \right) \mathbf { i } - 4 \mathbf { j } & 2 \leq t \leq 4 \\ \left( 8 - t ^ { 2 } \right) \mathbf { j } & 4 \leq t \leq 10 \end{array} \right.

B) r(t) ={tit2j0t2(4+t) i+4j2t4(8+t) j4t8\mathbf { r } ( t ) = \left\{ \begin{array} { l l } t \mathbf { i } - t ^ { 2 } \mathbf { j } & 0 \leq t \leq 2 \\ ( 4 + t ) \mathbf { i } + 4 \mathbf { j } & 2 \leq t \leq 4 \\ ( 8 + t ) \mathbf { j } & 4 \leq t \leq 8 \end{array} \right.

C)
r(t) ={ti+t2j0t2(4+t) i4j2t4(8t2) j4t8\mathbf { r } ( t ) = \left\{ \begin{array} { l l } t \mathbf { i } + t ^ { 2 } \mathbf { j } & 0 \leq t \leq 2 \\( 4 + t ) \mathbf { i } - 4 \mathbf { j } & 2 \leq t \leq 4 \\\left( 8 - t ^ { 2 } \right) \mathbf { j } & 4 \leq t \leq 8\end{array} \right.

D)
r(t) ={t2+t2j0t2(4t) i+4j2t4(8t) j4t8\mathbf { r } ( t ) = \left\{ \begin{array} { l l } t ^ { 2 } + t ^ { 2 } \mathbf { j } & 0 \leq t \leq 2 \\( 4 - t ) \mathbf { i } + 4 \mathbf { j } & 2 \leq t \leq 4 \\( 8 - t ) \mathbf { j } & 4 \leq t \leq 8\end{array} \right.
E)
r(t) ={ti+tj0t2(4t2) i+4j2t4(8t2) j4t10\mathbf { r } ( t ) = \left\{ \begin{array} { l l } t \mathbf { i } + t \mathbf { j } & 0 \leq t \leq 2 \\\left( 4 - t ^ { 2 } \right) \mathbf { i } + 4 \mathbf { j } & 2 \leq t \leq 4 \\\left( 8 - t ^ { 2 } \right) \mathbf { j } & 4 \leq t \leq 10\end{array} \right.

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions