Solved

Find the Conservative Vector Field for the Potential Function h(x,y,z)=16xyln(x+y)h ( x , y , z ) = 16 x y \ln ( x + y )

Question 105

Multiple Choice

Find the conservative vector field for the potential function h(x,y,z) =16xyln(x+y) h ( x , y , z ) = 16 x y \ln ( x + y ) by finding its gradient.


A) G(x,y,z) =(33xyx+y+33yln(x+y) ) i+(33xyx+y+33xln(x+y) ) j\mathbf { G } ( x , y , z ) = \left( \frac { 33 x y } { x + y } + 33 y \ln ( x + y ) \right) \mathbf { i } + \left( \frac { 33 x y } { x + y } + 33 x \ln ( x + y ) \right) \mathbf { j }
B) G(x,y,z) =(770xyx+y+770yln(x+y) ) i+(770xyx+y+770xln(x+y) ) j\mathbf { G } ( x , y , z ) = \left( \frac { 770 x y } { x + y } + 770 y \ln ( x + y ) \right) \mathbf { i } + \left( \frac { 770 x y } { x + y } + 770 x \ln ( x + y ) \right) \mathbf { j }
C) G(x,y,z) =(49xyx+y+49yln(x+y) ) i+(49xyx+y+49xln(x+y) ) j\mathbf { G } ( x , y , z ) = \left( \frac { 49 x y } { x + y } + 49 y \ln ( x + y ) \right) \mathbf { i } + \left( \frac { 49 x y } { x + y } + 49 x \ln ( x + y ) \right) \mathbf { j }
D) G(x,y,z) =(16xyx+y+16yln(x+y) ) i+(16xyx+y+16xln(x+y) ) j\mathbf { G } ( x , y , z ) = \left( \frac { 16 x y } { x + y } + 16 y \ln ( x + y ) \right) \mathbf { i } + \left( \frac { 16 x y } { x + y } + 16 x \ln ( x + y ) \right) \mathbf { j }
E) G(x,y,z) =(257xyx+y+257yln(x+y) ) i+(257xyx+y+257xln(x+y) ) j\mathbf { G } ( x , y , z ) = \left( \frac { 257 x y } { x + y } + 257 y \ln ( x + y ) \right) \mathbf { i } + \left( \frac { 257 x y } { x + y } + 257 x \ln ( x + y ) \right) \mathbf { j }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions