Solved

Suppose a 32-Pound Weight Is Suspended on a Spring 13 foot \frac { 1 } { 3 } \text { foot }

Question 32

Multiple Choice

Suppose a 32-pound weight is suspended on a spring. The weight is pulled 13 foot \frac { 1 } { 3 } \text { foot } below the equilibrium position and released. The motion takes place in a Med that furnishes a damping force of magnitude 18\frac { 1 } { 8 } speed at all times. Assume that the weight stretches the spring 23\frac { 2 } { 3 } foot from its natural position. Find a formula for the position of the weight as a function of time tt .


A) y(t) =3(cos12,287t16+12,28712,287sin12,287t16) y ( t ) = 3 \left( \cos \frac { \sqrt { 12,287 } t } { 16 } + \frac { \sqrt { 12,287 } } { 12,287 } \sin \frac { \sqrt { 12,287 } t } { 16 } \right)

B) y(t) =et/1612(cos12,287t16+12,28712,287sin12,287t16) y ( t ) = \frac { e ^ { - t / 16 } } { 12 } \left( \cos \frac { \sqrt { 12,287 } t } { 16 } + \frac { \sqrt { 12,287 } } { 12,287 } \sin \frac { \sqrt { 12,287 } t } { 16 } \right)

C) y(t) =et/163(cos12,287t16+12,28712,287sin12,287t16) y ( t ) = \frac { e ^ { - t / 16 } } { 3 } \left( \cos \frac { \sqrt { 12,287 } t } { 16 } + \frac { \sqrt { 12,287 } } { 12,287 } \sin \frac { \sqrt { 12,287 } t } { 16 } \right)

D) y(t) =6(cos12,287t16+12,28712,287sin12,287t16) y ( t ) = 6 \left( \cos \frac { \sqrt { 12,287 } t } { 16 } + \frac { \sqrt { 12,287 } } { 12,287 } \sin \frac { \sqrt { 12,287 } t } { 16 } \right)

E) y(t) =(cos12,287t16+12,28712,287sin12,287t16) y ( t ) = \left( \cos \frac { \sqrt { 12,287 } t } { 16 } + \frac { \sqrt { 12,287 } } { 12,287 } \sin \frac { \sqrt { 12,287 } t } { 16 } \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions