Solved

Use Integration by Parts to Establish a Reduction Formula for the Integral

Question 4

Multiple Choice

Use integration by parts to establish a reduction formula for the integral.
- xnexdx\int x ^ { n } e ^ { x } d x


A) xnexdx=xnex+nxn1exdx\int x ^ { n } e ^ { x } d x = x ^ { n } e ^ { x } + n \int x ^ { n - 1 } e ^ { x } d x
B) xnexdx=xnexnxn1exdx\int x ^ { n } e ^ { x } d x = x ^ { n } e ^ { x } - n \int x ^ { n - 1 } e ^ { x } d x
C) xnexdx=xnex1n+1xn1exdx\int x ^ { n } e ^ { x } d x = x ^ { n } e ^ { x } - \frac { 1 } { n + 1 } \int x ^ { n - 1 } e ^ { x } d x
D) xnexdx=xnexnxn+1exdx\int x ^ { n } e ^ { x } d x = x ^ { n } e ^ { x } - n \int x ^ { n + 1 } e ^ { x } d x

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions