Solved

Evaluate the Integral f1(x)dx=xf1(x)f(y)dy,y=f1(x)\int f ^ { - 1 } ( x ) d x = x f ^ { - 1 } ( x ) - \int f ( y ) d y , y = f ^ { - 1 } ( x )

Question 9

Multiple Choice

Evaluate the integral.
-Use the formula f1(x) dx=xf1(x) f(y) dy,y=f1(x) \int f ^ { - 1 } ( x ) d x = x f ^ { - 1 } ( x ) - \int f ( y ) d y , y = f ^ { - 1 } ( x ) to evaluate the integral.
cot1xdx\int \cot ^ { - 1 } x d x


A) xcot1xlnsin(cot1x) +Cx \cot ^ { - 1 } x - \ln \sin \left( \cot ^ { - 1 } x \right) + C
B) xcot1xlnsinx+Cx \cot ^ { - 1 } x - \ln \sin x + C
C) xcot1xx+Cx \cot ^ { - 1 } x - x + C
D) xcot1x+lnsin(cot1x) +Cx \cot ^ { - 1 } x + \ln \sin \left( \cot ^ { - 1 } x \right) + C

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions