Solved

Solve the Problem q\mathrm { q } (In Coulombs) Delivered by a Current

Question 103

Multiple Choice

Solve the problem.
-The charge q\mathrm { q } (in coulombs) delivered by a current i\mathrm { i } (in amperes) is given by q=idt\mathrm { q } = \int \mathrm { i } \mathrm { dt } , where tt is the time (in seconds) . A damped-out periodic wave form has current given by i=e3tcos5t\mathrm { i } = \mathrm { e } ^ { - 3 \mathrm { t } } \cos 5 \mathrm { t } . Find a formula for the charge delivered over time tt .


A) e3t(3cos5t+5sin5t) 25+C\frac { e ^ { - 3 t } ( - 3 \cos 5 t + 5 \sin 5 t ) } { 25 } + C
B) e3t(3cos5t+sin5) 34+C\frac { e ^ { - 3 t } ( - 3 \cos 5 t + \sin 5 ) } { 34 } + C
C) e3t(3cos5t+5sin5t) 34+C\frac { e ^ { - 3 t } ( - 3 \cos 5 t + 5 \sin 5 t ) } { 34 } + C
D) 3cos5t+5sin5t34+C\frac { - 3 \cos 5 t + 5 \sin 5 t } { 34 } + C

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions