Solved

Use Various Trigonometric Identities to Simplify the Expression Then Integrate sin2θcos5θdθ\int \sin ^ { 2 } \theta \cos 5 \theta d \theta

Question 44

Multiple Choice

Use various trigonometric identities to simplify the expression then integrate.
- sin2θcos5θdθ\int \sin ^ { 2 } \theta \cos 5 \theta d \theta


A) 110sin5θ14sin3θ128sin7θ+C\frac { 1 } { 10 } \sin 5 \theta - \frac { 1 } { 4 } \sin 3 \theta - \frac { 1 } { 28 } \sin 7 \theta + C
B) 12sin5θ14sin3θ17sin7θ+C\frac { 1 } { 2 } \sin 5 \theta - \frac { 1 } { 4 } \sin 3 \theta - \frac { 1 } { 7 } \sin 7 \theta + C
C) 110sin3θ14sin5θ128sin7θ+C\frac { 1 } { 10 } \sin 3 \theta - \frac { 1 } { 4 } \sin 5 \theta - \frac { 1 } { 28 } \sin 7 \theta + C
D) 110sin5θ14sin7θ128sin3θ+C\frac { 1 } { 10 } \sin 5 \theta - \frac { 1 } { 4 } \sin 7 \theta - \frac { 1 } { 28 } \sin 3 \theta + C

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions