Solved

Use a Trigonometric Substitution to Evaluate the Integral exdx1e2x\int \frac { e ^ { x } d x } { \sqrt { 1 - e ^ { 2 x } } }

Question 51

Multiple Choice

Use a trigonometric substitution to evaluate the integral.
- exdx1e2x\int \frac { e ^ { x } d x } { \sqrt { 1 - e ^ { 2 x } } }


A) sin1(ex) +C\sin ^ { - 1 } \left( e ^ { x } \right) + C
B) 21e2x+C- 2 \sqrt { 1 - \mathrm { e } ^ { 2 \mathrm { x } } } + \mathrm { C }
C) exsin1(ex) +Ce ^ { x } \sin ^ { - 1 } \left( e ^ { x } \right) + C
D) sec1(ex) +C\sec ^ { - 1 } \left( \mathrm { e } ^ { \mathrm { x } } \right) + \mathrm { C }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions