Solved

Find the Derivative at Each Critical Point and Determine the Local

Question 150

Multiple Choice

Find the derivative at each critical point and determine the local extreme values.
- y=x(4x2) y = x \left( 4 - x ^ { 2 } \right)


A)
 Critical Pt.  derivative  Extremum  Value x=1.150 local max 3.08x=1.150 local min 6.16\begin{array}{l|l|l|r}\text { Critical Pt. } & \text { derivative } & \text { Extremum } & \text { Value } \\\hline x=-1.15 & 0 & \text { local max } & 3.08 \\x=1.15 & 0 & \text { local min } & -6.16\end{array}

B)
 Critical Pt.  derivative  Extremum  Value x=1.150 local max 3.08x=1.150 local min 3.08\begin{array}{l|l|l|r}\text { Critical Pt. } & \text { derivative } & \text { Extremum } & \text { Value } \\\hline x=1.15 & 0 & \text { local max } & 3.08 \\x=-1.15 & 0 & \text { local min } & -3.08\end{array}

C)
 Critical Pt.  derivative  Extremum  Value x=1.150 local max 6.16x=1.150 local min 3.08\begin{array}{c|l|l|c}\text { Critical Pt. } & \text { derivative } & \text { Extremum } & \text { Value } \\\hline x=-1.15 & 0 & \text { local max } & -6.16 \\x=1.15 & 0 & \text { local min } & 3.08\end{array}

D)
 Critical Pt.  derivative  Extremum  Value x=1.150 local max 6.16x=1.150 local min 3.08\begin{array}{l|l|l|r}\text { Critical Pt. } & \text { derivative } & \text { Extremum } & \text { Value } \\\hline \mathrm{x}=1.15 & 0 & \text { local max } & -6.16 \\\mathrm{x}=-1.15 & 0 & \text { local min } & 3.08\end{array}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions