Solved

Compare the Right-Hand and Left-Hand Derivatives to Determine Whether or Not

Question 168

Multiple Choice

Compare the right-hand and left-hand derivatives to determine whether or not the function is differentiable at the point whose coordinates are given.
- Compare the right-hand and left-hand derivatives to determine whether or not the function is differentiable at the point whose coordinates are given. -    y=x^{2} \quad y=\sqrt{x}   A)  Since  \lim _ { x \rightarrow1  ^ { + } } \mathrm { f } ^ { \prime } ( \mathrm { x } )  = 2  while  \lim _ { x \rightarrow 1 ^ { - } } \mathrm { f } ^ { \prime } ( \mathrm { x } )  = \frac { 1 } { 2 } , \mathrm { f } ( \mathrm { x } )   is not differentiable at  x = 1 . B)  Since  \lim _ { x \rightarrow 1^ { + } } \mathrm { f } ^ { \prime } ( x )  = \frac { 1 } { 2 }  while   \lim _ { x \rightarrow 1 ^ { - } } \mathrm { f } ^ { \prime } ( \mathrm { x } )  = 1 , \mathrm { f } ( \mathrm { x } )   is not differentiable at  x = 1 . C)  Since  \lim _ { x \rightarrow1 ^ { + } } f ^ { \prime } ( x )  = \frac { 1 } { 2 }  while   \lim _ { x \rightarrow 1 ^ { - } }f ^ { \prime } ( x )  = 2 , f ( x )   is not differentiable at  x = 1 . D)  Since  \lim _ { x \rightarrow 1 ^ { + } } f ^ { \prime } ( x )  = 2  while  \lim _ { x \rightarrow 1 ^ { - } } f ^ { \prime } ( x )  = 2 , f ( x )   is differentiable at  x = 1 .  y=x2y=x y=x^{2} \quad y=\sqrt{x}


A) Since limx1+f(x) =2\lim _ { x \rightarrow1 ^ { + } } \mathrm { f } ^ { \prime } ( \mathrm { x } ) = 2 while limx1f(x) =12,f(x) \lim _ { x \rightarrow 1 ^ { - } } \mathrm { f } ^ { \prime } ( \mathrm { x } ) = \frac { 1 } { 2 } , \mathrm { f } ( \mathrm { x } ) is not differentiable at x=1x = 1 .
B) Since limx1+f(x) =12\lim _ { x \rightarrow 1^ { + } } \mathrm { f } ^ { \prime } ( x ) = \frac { 1 } { 2 } while limx1f(x) =1,f(x) \lim _ { x \rightarrow 1 ^ { - } } \mathrm { f } ^ { \prime } ( \mathrm { x } ) = 1 , \mathrm { f } ( \mathrm { x } ) is not differentiable at x=1x = 1 .
C) Since limx1+f(x) =12\lim _ { x \rightarrow1 ^ { + } } f ^ { \prime } ( x ) = \frac { 1 } { 2 } while limx1f(x) =2,f(x) \lim _ { x \rightarrow 1 ^ { - } }f ^ { \prime } ( x ) = 2 , f ( x ) is not differentiable at x=1x = 1 .
D) Since limx1+f(x) =2\lim _ { x \rightarrow 1 ^ { + } } f ^ { \prime } ( x ) = 2 while limx1f(x) =2,f(x) \lim _ { x \rightarrow 1 ^ { - } } f ^ { \prime } ( x ) = 2 , f ( x ) is differentiable at x=1x = 1 .

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions