Solved

Find the Derivative of the Function r=θ8θ+8r = \frac { \sqrt { \theta } - 8 } { \sqrt { \theta } + 8 }

Question 33

Multiple Choice

Find the derivative of the function.
- r=θ8θ+8r = \frac { \sqrt { \theta } - 8 } { \sqrt { \theta } + 8 }


A) r=8θ(θ+8) 2r ^ { \prime } = - \frac { 8 } { \sqrt { \theta } ( \theta + 8 ) ^ { 2 } }
B) r=8θ(θ+8) 2\mathrm { r } ^ { \prime } = \frac { 8 } { \sqrt { \theta } ( \theta + 8 ) ^ { 2 } }
C) r=16(θ+8) θ264r ^ { \prime } = \frac { 16 } { ( \theta + 8 ) \sqrt { \theta ^ { 2 } - 64 } }
D) r=8θ+8\mathrm { r } ^ { \prime } = \frac { 8 } { \theta + 8 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions