Solved

Provide an Appropriate Response e=QhQCQhe = \frac { Q _ { h } - Q _ { C } } { Q _ { h } }

Question 39

Multiple Choice

Provide an appropriate response.
-A heat engine is a device that converts thermal energy into other forms. The thermal efficiency, e, of a heat engin defined by
e=QhQCQhe = \frac { Q _ { h } - Q _ { C } } { Q _ { h } } where Qh\mathrm { Q } _ { \mathrm { h } } is the heat absorbed in one cycle and QC\mathrm { Q } _ { \mathrm { C } } , the heat released into a reservoir in one cycle, is a constant. Find dedQh\frac { \mathrm { de } } { \mathrm { dQ } _ { \mathrm { h } } } .


A) dedQh=QCQh2\frac { d e } { d Q _ { h } } = - \frac { Q _ { C } } { Q _ { h } ^ { 2 } }
B) dedQh=1Qh2\frac { \mathrm { de } } { \mathrm { dQ } \mathrm { h } } = \frac { 1 } { \mathrm { Qh } ^ { 2 } }
C) dedQh=QCQh2\frac { \mathrm { de } } { \mathrm { dQ } \mathrm { h } } = \frac { \mathrm { Q } _ { \mathrm { C } } } { \mathrm { Q } _ { \mathrm { h } } { } ^ { 2 } }
D) dedQh=QhQC\frac { \mathrm { de } } { \mathrm { dQ } \mathrm { h } } = \mathrm { Q } _ { \mathrm { h } } - \mathrm { Q } _ { \mathrm { C } }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions