Solved

Find the Limit LL For the Given Function ff , the Point x0x _ { 0 }

Question 86

Multiple Choice

Find the limit LL for the given function ff , the point x0x _ { 0 } , and the positive number ε\varepsilon . Then find a number δ>0\delta > 0 such that, for all xt0<xx0<δf(x) L<εx _ { t } 0 < \left| x - x _ { 0 } \right| < \delta \Rightarrow | f ( x ) - L | < \varepsilon .
- f(x) =10x,x0=5,ε=0.1\mathrm { f } ( \mathrm { x } ) = \frac { 10 } { \mathrm { x } } , \mathrm { x } _ { 0 } = 5 , \varepsilon = 0.1


A) L=2;δ=0.53\mathrm { L } = 2 ; \delta = 0.53
B) L=2;δ=0.24\mathrm { L } = 2 ; \delta = 0.24
C) L=2;δ=0.26L = 2 ; \delta = 0.26
D) L=2;δ=2.63L = 2 ; \delta = 2.63

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions