Solved

Find the Limit LL For the Given Function ff , the Point x0x _ { 0 }

Question 90

Multiple Choice

Find the limit LL for the given function ff , the point x0x _ { 0 } , and the positive number ε\varepsilon . Then find a number δ>0\delta > 0 such that, for all xt0<xx0<δf(x) L<εx _ { t } 0 < \left| x - x _ { 0 } \right| < \delta \Rightarrow | f ( x ) - L | < \varepsilon .
- f(x) =6x+3,x0=5,ε=0.06\mathrm { f } ( \mathrm { x } ) = 6 \mathrm { x } + 3 , \mathrm { x } _ { 0 } = - 5 , \varepsilon = 0.06


A) L=27;δ=0.01\mathrm { L } = - 27 ; \delta = 0.01
B) L=33;δ=0.01L = - 33 ; \delta = 0.01
C) L=27;δ=0.02L = - 27 ; \delta = 0.02
D) L=33;δ=0.02\mathrm { L } = 33 ; \delta = 0.02

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions