Solved

Find a Formula for the Nth Partial Sum of the Series

Question 63

Multiple Choice

Find a formula for the nth partial sum of the series and use it to find the series' sum if the series converges.
- 557+5495343++(1) n157n1+5 - \frac { 5 } { 7 } + \frac { 5 } { 49 } - \frac { 5 } { 343 } + \ldots + ( - 1 ) ^ { n - 1 } \frac { 5 } { 7 ^ { n - 1 } } + \ldots


A) 5(11(7) n1) 1+17;356\frac { 5 \left( 1 - \frac { 1 } { ( - 7 ) ^ { n - 1 } } \right) } { 1 + \frac { 1 } { 7 } } ; \frac { 35 } { 6 }

B) 5(11(7) n) 1+17;356\frac { 5 \left( 1 - \frac { 1 } { ( - 7 ) ^ { n } } \right) } { 1 + \frac { 1 } { 7 } } ; \frac { 35 } { 6 }

C) 5(11(7) n1) 1+17;358\frac { 5 \left( 1 - \frac { 1 } { ( - 7 ) ^ { n - 1 } } \right) } { 1 + \frac { 1 } { 7 } } ; \frac { 35 } { 8 }

D) 5(11(7) n) 1+17;358\frac { 5 \left( 1 - \frac { 1 } { ( - 7 ) ^ { n } } \right) } { 1 + \frac { 1 } { 7 } } ; \frac { 35 } { 8 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions