Solved

Find a Formula for the Nth Partial Sum of the Series

Question 59

Multiple Choice

Find a formula for the nth partial sum of the series and use it to find the series' sum if the series converges.
- 9123+9234+9345++9n(n+1) (n+2) +\frac { 9 } { 1 \cdot 2 \cdot 3 } + \frac { 9 } { 2 \cdot 3 \cdot 4 } + \frac { 9 } { 3 \cdot 4 \cdot 5 } + \ldots + \frac { 9 } { n ( n + 1 ) ( n + 2 ) } + \ldots


A) 9(n+1) (n+3) 2n(n+2) ;92\frac { 9 ( n + 1 ) ( n + 3 ) } { 2 n ( n + 2 ) } ; \frac { 9 } { 2 }

B) 9n(n+1) 4(n+2) (n+3) ;94\frac { 9 n ( n + 1 ) } { 4 ( n + 2 ) ( n + 3 ) } ; \frac { 9 } { 4 }

C) 9n(n+2) 2(n+1) (n+3) ;92\frac { 9 n ( n + 2 ) } { 2 ( n + 1 ) ( n + 3 ) } ; \frac { 9 } { 2 }

D) 9n(n+3) 4(n+1) (n+2) ;94\frac { 9 n ( n + 3 ) } { 4 ( n + 1 ) ( n + 2 ) } ; \frac { 9 } { 4 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions